Minggu, 07 Oktober 2012

Perbedaan Istilah Istilah Penting Dalam Komputer

Memang dari judulnya pasti anda bingung, emang ada nama penting dalam komputer. Sebenarnya banyak komponen komponen dalam komputer yang tidak kita ketahui pengertian sebenarnya dari komponen tersebut. Untuk lebih jelasnya mari kita simak penjelasan dibawah ini.




SDRAM




Seperti telah dibahas sebelumnya, bahwa SDRAM adalah kependekan dari Synchronous DRAM (Synchronous Dynamic Random Access Memory). SDRAM diperkenalkan pertama kali pada tahun 1996. SDRAM merupakan salah satu dari jenis memori komputer kategori solid state. Modul memori SDRAM banyak digunakan pada komputer jenis PC. Pada komputer yang menggunakan mikroprosesor produk Intel, SDRAM ini sering dipasangkan dengan Pentium MMX, Pentium Pro, Pentium II, Pentium III, Celeron, sebagian dengan Pentium 4. Sedangkan pada komputer yang menggunakan mikroprosesor produk AMD, SDRAM ini sering dipasangkan dengan AMD Athlon dan Duron.

SDRAM yang pertama kali diperkenalkan berkecepatan 66 MHz yang kemudian lebih dikenal dengan nama SDRAM PC-66. SDRAM PC-66 inilah yang sering dipasangkan dengan Pentium MMX, Pentium Pro dan Pentium II. Pada perkembangan selanjutnya diproduksi SDRAM berkecepatan 100 MHz yang lebih dikenal dengan nama SDRAM PC-100. Pada saat itu, SDRAM PC-100 banyak dipasangkan dengan komputer Pentium III dan AMD Athlon. Sampai akhirnya diproduksi SDRAM yang lebih cepat lagi, yaitu SDRAM berkecepatan 133 MHz yang lebih dikenal dengan nama SDRAM PC-133, sering dipasangkan dengan komputer berbasis Pentium 4 ataupun AMD Athlon dan Duron.
Popularitas SDRAM mulai menurun ketika muncul modul memori yang lebih baru, yaitu DDR SDRAM. Apalagi di pasaran, DDR SDRAM ini didukung dengan chipset yang stabil. Modul memori baru tersebut menggeser popularitas SDRAM.

* Organisasi DRAM *
Di dalam suatu chip memori terdapat lokasi yang secara fisik berfungsi sebagai tempat untuk menyimpan data, berupa sel-sel yang tersusun membentuk matriks (baris dan kolom). Setiap selnya terbentuk dari satu kapasitor dan satu transistor. Setiap sel (setiap unit penyimpan) mampu menyimpan satu bit data. Dengan demikian, data yang disimpan dalam unit penyimpan ini, secara unik juga membentuk susunan baris dan kolom. Sistem penyimpanan data di dalam sel-sel memori individual seperti ini terjadi pada setiap bank memori. Jika controller mengakses DRAM akan dilakukan dengan cara menentukan bank memori lebih dahulu, kemudian menentukan baris dan kolomnya, dan akhirnya data akan dibaca dari lokasi fisik sel-sel memori tadi. Pada DRAM modern, jumlah baris dan kolom sel (unit penyimpan data) tersebut dapat mencapai ribuan.
Dalam sebuah chip, data disimpan dalam bentuk bit pada setiap unit penyimpan. Jumlah unit penyimpan pada setiap chip bervariasi, ada yang 64 M (64 juta), 128 M (128 juta), atau mungkin lebih (?) dengan lebar data 4x, 8x, atau 16x. Jika sebuah chip berisi 64 M unit penyimpan dengan lebar data 4x, maka chip tersebut mampu menampung:


* SDRAM Latency *
CPU (prosesor) bertugas memproses data yang diperoleh dari memori. Oleh karena itu, sebelum CPU (prosesor) memproses data harus mengakses memori lebih dahulu untuk memperoleh data. Jika memori utama yang digunakan oleh komputer tersebut adalah SDRAM, maka prosesor harus mengakses SDRAM secara sempurna untuk memperoleh data. Namun, umumnya, CPU modern memiliki kecepatan yang lebih tinggi (lebih cepat) dibandingkan kecepatan SDRAM, sehingga prosesor harus menunggu beberapa saat untuk mendapatkan data dari SDRAM.
Lambatnya pengambilan data dari SDRAM dipengaruhi berbagai faktor, salah satunya adalah SDRAM latency, yaitu lama waktu penundaan (kelambatan) yang terjadi apabila komputer mengakses data dalam SDRAM. SDRAM latency berkaitan erat dan bahkan tak jarang turut memberikan sumbangan yang besar pada total memory latency (besarnya kelambatan memori secara keseluruhan) yang dapat mengakibatkan kemacetan pada sistem komputer.
Terdapat empat ukuran utama yang menentukan besarnya faktor kelambatan akses SDRAM (SDRAM latency), yaitu tCAS, tRCD, tRP, dan tRAS. Huruf ‘t’ kependekan dari time (lama waktu).
a. tCAS (CAS Latency)
CAS kependekan dari Column Address Strobe atau kadang-kadang disebut juga kependekan dari Column Address Select. Kedua istilah ini mengacu pada kolom unit penyimpan data pada chip memori. tCAS menyatakan lama waktu (tenggang waktu) atau banyaknya siklus detak (clock cycle) yang diperlukan untuk mengakses kolom tertentu dari suatu blok data yang tersimpan di dalam SDRAM. Lama waktu ini dihitung sejak memory controller mengenali modul memori untuk mengakses sebuah kolom tertentu, sampai data dibaca dan diusung ke luar melalui pin. Lama waktu tCAS ini dikenal pula dengan sebutan CAS Latency atau tCL, atau CL.
Satuan lama waktu yang dipakai biasanya dinyatakan dengan banyaknya siklus detak yang diperlukan untuk mengakses kolom tersebut. Sehingga dapat pula dikatakan bahwa tCAS (CAS Latency) menggambarkan banyaknya siklus detak (clock cycle) yang diperlukan terhitung sejak permintaan pengiriman data pada lokasi memori hingga data tersebut kemudian ditransmisi oleh modul SDRAM tadi.
Data dalam bentuk bit yang diambil dari memori, diubah menjadi bentuk byte ketika dikirim ke interface prosesor. Proses pengubahan ini kadang-kadang terjadi pada modul memori, kadang-kadang juga terjadi pada chip prosesor.
Bila memilih salah satu dari dua buah atau lebih modul RAM yang memiliki clock speed (bus) yang sama, sebaiknya memilih yang nilai atau angka CAS Latency-nya rendah, karena RAM ini dapat mentransfer data lebih cepat. Semakin rendah nilai/angka CAS Latency-nya, semakin baik untuk dipilih.
Lantency, berpengaruh terhadap operasi instruksi memori, operasi baca/tulis, dan operasi lainnya. Jika nilai latency-nya besar, maka CPU (prosesor) akan menunggu kiriman data lebih lama.
Pembandingan CAS Lantency SDRAM.
Agar lebih jelas, bagaimana CAS Lantency (CL) mempengaruhi cepat-lambatnya pengambilan data pada RAM, berikut ini disajikan ilustrasinya.
Misalkan terdapat dua modul SDRAM, yaitu SDRAM A dan SDRAM B, yang memiliki clock speed yang sama, yaitu 100 MHz. tetapi CAS Latency-nya berbeda. SDRAM A memiliki nilai CL=3, sedangkan SDRAM B memiliki nilai CL=4. Hal ini bermakna:
o SDRAM A memiliki waktu penundaan 3 siklus detak (clock cycle) untuk mendapatkan data bit pertama. Jika untuk setiap siklus detaknya membutuhkan waktu 10 ns, maka untuk mendapatkan data bit pertama, memerlukan waktu 3 x 10 ns = 30 ns.
o SDRAM B memiliki waktu penundaan 4 siklus detak (CL=4). Untuk setiap siklus detaknya membutuhkan waktu 10 ns, sehingga untuk mendapatkan bit pertama, memerlukan waktu 4 x 10 ns = 40 ns.
Tampak bahwa pengambilan data atau bit yang pertama dari SDRAM A, lebih cepat (memerlukan waktu yang lebih pendek) dari pada SDRAM B, karena nilai CL SDRAM A lebih kecil dibandingkan nilai CL SDRAM B.
Sebagai bahan perbandingan, berikut ini disajikan perhitungan bila kedua modul SDRAM mempunyai clock speed yang berbeda dengan nilai CL yang juga berbeda.
Misalkan SDRAM A memiliki clock speed 100 MHz dengan nilai CL=3, dan SDRAM B memiliki clock speed 133 MHz dengan nilai CL=4. Maka CAS Latency-nya dapat dihitung sebagai berikut:
o SDRAM A memiliki waktu penundaan 3 siklus detak (CL=3) untuk mendapatkan bit pertama. Setiap siklus detaknya memerlukan waktu 10 ns. Maka total lama waktu yang diperlukan untuk mendapatkan bit pertama, adalah 3 x 10 ns = 30 ns.
o SDRAM B memiliki waktu penundaan 4 siklus detak (CL=4). Setiap siklus detaknya membutuhkan waktu 7,5 ns, sehingga untuk mendapatkan bit pertama, memerlukan lama waktu 4 x 7,51 ns = 30,04 ns.
Bandingkanlah, lawa waktu SDRAM A dan SDRAM B untuk mendapatkan bit pertama dapat dikatakan sama (karena tipis sekali perbedaannya). Jika saja clock speed SDRAM B sedikit lebih tinggi, dapat dipastikan SDRAM B akan lebih cepat menstransmisi data dibandingkan SDRAM A.
Jelas bahwa besarnya CAS Latency berpengaruh terhadap cepat-lambatnya pengambilan data dari RAM, yaitu pada pengambilan bit pertama pada RAM. Bila kedua SDRAM mempunyai clock speed yang sama, memilih SDRAM yang nilai atau angka CAS Latency-nya lebih rendah, lebih menguntungkan karena pengambilan data dari RAM dapat berjalan lebih cepat. Namun, bila clock speed kedua SDRAM tersebut berbeda, memilih SDRAM yang clock speed-nya lebih tinggi mungkin akan lebih menguntungkan, walaupun nila CAS Latency-nya lebih besar. Sebab, waktu penundaan (CAS Latency) hanya terjadi pada pengambilan bit pertama, tidak terjadi pada bit kedua dan bit selanjutnya. Bila pengambilan data berlangsung beruntun lebih dari satu bit, maka SDRAM yang clock speednya lebih tinggi akan lebih cepat. Perhatikan contoh perhitungan berikut:
Misalkan terdapat dua modul SDRAM, yaitu SDRAM A dan SDRAM B. SDRAM A memiliki clock speed 100 MHz dengan CAS Latency (CL) = 3. SDRAM B memiliki clock speed 133 MHz dengan CAS Latency (CL) = 4. Keduanya akan mentransmisi 4 bit data secara beruntun.
o SDRAM A memiliki waktu penundaan 3 siklus detak (CL=3) untuk mendapatkan bit pertama. Setiap siklus detaknya memerlukan waktu 10 ns. Maka,
 lama waktu yang diperlukan untuk mendapatkan bit pertama, adalah 3 x 10 ns = 30 ns.
 lama waktu yang diperlukan untuk mendapatkan bit kedua sampai bit keempat, adalah 3 x 10 ns = 30 ns.
 Total lama waktu yang diperlukan untuk mendapatkan bit pertama sampai dengan keempat, adalah 30 ns + 30 ns = 60 ns
o SDRAM B memiliki waktu penundaan 4 siklus detak (CL=4) untuk mendapatkan bit pertama, Setiap siklus detaknya memerlukan waktu 7.51 ns. Maka,
 lama waktu yang diperlukan untuk mendapatkan bit pertama, adalah 4 x 7,51 ns = 30,04 ns.
 lama waktu yang diperlukan untuk mendapatkan bit kedua sampai bit keempat, adalah 3 x 7,51 ns = 22,53 ns.
 Total lama waktu yang diperlukan untuk mendapatkan bit pertama sampai dengan keempat, adalah 30,04 ns + 22,53 ns = 52,57 ns
Tampak bahwa untuk menyelesaikan pengambilan 4 bit data secara beruntun, SDRAM B lebih cepat dibandingkan SDRAM A, karena secara keseluruhan SDRAM B memerlukan waktu yang lebih pendek. Dengan kata lain dapat dikatakan bahwa SDRAM yang memiliki clock speed lebih tinggi, lebih baik dan secara keseluruhan tetap lebih cepat (walaupun memiliki nilai CAS Latency yang lebih tinggi) dibandingkan SDRAM yang clock speed-nya lebih rendah dengan CAS Latency yang rendah juga.
Patut dicatat bahwa SDRAM yang kecepatannya tinggi dapat diinstall-kan pada sistem komputer yang kecepatannya lebih rendah. Namun, kecepatan SDRAM tersebut akan menurun dengan sendirinya disesuaikan dengan kecepatan sistem komputer tadi. Misalnya, SDRAM berkecepatan 133 MHz dapat dipasangkan pada sistem komputer yang kecepatan bus memorinya 100 MHz, tetapi SDRAM tadi akan berjalan pada kecepatan 100 MHz, tidak lagi berjalan pada kecepatan 133 MHz. Dengan demikian, pemasangan RAM yang berkecepatan tinggi pada sistem komputer yang bus memorinya lebih rendah tidak akan meningkatkan performa atau kinerja komputer.
b. tRAS
RAS kependekan dari Row Address Strobe. tRAS menyatakan banyaknya siklus detak (clock cycle) minimum yang diperlukan untuk mengakses baris tertentu dari sekelompok data di dalam RAM merupakan total waktu yang diperlukan antara kondisi ‘aktif’ dengan kondisi ‘precharge. tRAS ini dikenal pula dengan sebutan Active to Precharge Delay.
c. tRCD (RAS to CAS Delay)
Selengkapnya, RCD kependekan dari Row address to Column address Delay. tRCD menyatakan banyaknya siklus detak (clock cycle) yang diperlukan antara RAS dan CAS. Hal ini menggambarkan banyaknya waktu yang diperlukan sejak komputer menentukan baris dan kolom dari suatu blok memori hingga proses pembacaan atau penulisan yang sebenarnya pada lokasi tersebut.
d. tRP (RAS Precharge)
tRP kependekan dari Row Precharge time. tRP menyatakan banyaknya siklus detak (clock cycle) yang diperlukan untuk mengakhiri akses suatu baris data dari suatu memori, sampai membuka akses baris data berikutnya pada memori tadi. Dengan kata lain, tRP ini menggambarkan banyaknya tenggang waktu antara perintah ‘precharge’ dengan perintah ‘aktif’. Perintah ‘precharge’ adalah perintah tanda ditutupnya siklus akses yang baru saja dilakukan (pada memori), dan perintah ‘aktif’ adalah tanda dimulainya siklus pembacaan atau penulisan baru.

* Notasi SDRAM Latency *

Dalam prakteknya, untuk mengetahui ukuran kelambatan akses data pada SDRAM (SDRAM Latency), biasanya diwujudkan dalam bentuk penulisan empat deretan angka integer. Antara angka satu dengan lainnya dipisahkan oleh tanda atau garis penghubung (tanda ‘―‘). Deretan angka ini menggambarkan seberapa besar nilai kelambatan SDRAM. Deretan angka tersebut biasanya berturut-turut mengnyatakan besarnya nilai tCAS-tRCD-tRP-tRAS. Misalnya, 2-2-3-6 atau 3-3-4-7 atau 4-5-6-12. Setiap perusahaan produsen RAM umumnya mencantumkan nilai latency RAM produksinya.
Jika deretan angka atau nilai latency tadi adalah 2.4-3-3-7, maka bermakna nilai tCAS=2.4, tRCD=3, tRP=3, dan tRAS= 7. Nilai tCAS=2.4 bermakna bahwa nilai latency-nya adalah .4, sedangkan angka 2 menggambarkan tipe RAM tersebut, yaitu tipe DDR (Double Data Rate) RAM.
Kadang-kadang pengguna komputer ingin mengatur nilai latency SDRAM secara manual ketika SDRAM tersebut sudah terpasang pada sistem hardware komputer. Pengaturan secara manual nilai latency RAM dapat dilakukan pada BIOS, karena pada BIOS suatu PC seringkali disediakan menu pengaturan nilai latency suatu RAM. Para pengguna komputer dapat melakukan pengaturan sendiri melalui fasilitas yang tersedia pada BIOS tersebut dalam upaya untuk meningkatkan performa dan stabilitas komputer.
Pengaturan secara manual ini harus dilakukan dengan benar, sebab bila salah dalam menuliskan nilai latencynya, misalnya angkanya terlalu rendah (lebih rendah) dari nilai sebenarnya, dapat mengakibatkan sistem komputer menjadi crash atau gagal melakukan booting. Perlu diketahui bahwa penulisan nilai latency yang angkanya lebih rendah dari nilai sebenarnya, berarti melakukan tindakan overclocking pada SDRAM yang sedang digunakan. Untungnya, pada saat ini, sebagian besar komputer telah dilengkapi fitur pengaturan RAM timing (angka latency) secara otomatis yang didasarkan pada Serial Presence Detect (SPD) ROM yang terdapat di dalam RAM yang mengandung keempat nilai timing tadi yang telah ditentukan oleh pabrik pembuat RAM. Dengan demikian, para pengguna komputer tidak perlu khawatir dan tidak lagi disibukkan oleh pengaturan nilai latency secara manual.

DDR SDRAM




DDR SDRAM kependekan dari Double Data Rate Synchronous Dynamic Random Access Memory. Secara fisik DDR SDRAM adalah IC memori yang sering digunakan dalam komputer. Sesuai dengan namanya (DDR, Double Data Rate), memori ini memiliki bandwidth dua kali lipat memori SDRAM. Dalam satu siklus detak (clock cycle) mampu menstranmisi dua data (double pumped, dual pumped, double transition), yaitu pada saat kurva clock signal sedang tinggi dan saat kurva clock signal sedang turun. Modul DDR SDRAM pertama kali diperkenalkan dan digunakan untuk PC pada tahun 2000.

DDR SDRAM merupakan jenis DRAM 64 bit. Dengan demikian laju transfer data maksimum DDR SDRAM adalah 16 kali frekuensi bus memorinya (2 x 8 x frekuensi bus memori). Misalkan frekuensi bus memorinya adalah 100 MHz, maka laju transfer data maksimum adalah 1600 MB/s (1600 MB per detik), yang diperoleh dari perhitungan:
2 x 8 x 100 = 1600 MB/s
Angka 2, menyatakan nilai DDR (double pump), transmisi data terjadi dua kali per siklus detak.
Angka 8, menyatakan lebar bus memori dalam satuan byte (64 bit = 8 byte).
Angka 100, menyatakan frekuensi (clock speed) bus memori (100 MHz).
Perlu diketahui bahwa DDR SDRAM menggunakan teknologi DDR (Double Data Rate) hanya untuk jalur pengiriman data, sedangkan Address dan Control signals masih menggunakan teknologi SDR (Single Data Rate).
Berikut ini disajikan laju transfer data maksimum (bandwidth maksimum) beberapa DDR SDRAM standar.


Antara DDR SDRAM satu dengan lainnya pada prinsipnya tidak terdapat perbedaan arsitektural, perbedaan hanya terjadi pada kecepatan/frekuensi bus-nya saja. Misalnya, PC- 2100 didesain berjalan pada frekuensi bus (clock) 133 MHz, sedangkan PC-3200 didesain berjalan pada frekuensi bus (clock) 200 MHz. Semakin tinggi frekuensi bus memorinya, semakin cepat transmisi data yang kerjakan oleh DDR SDRAM.
DDR SDRAM biasanya dapat diatur agar bekerja lebih cepat dari frekuensi bus standar-nya atau bekerja lebih lambat dari frekuensi bus standar-nya. Pada prakteknya, pengaturan DDR SDRAM agar bekerja dengan kecepatan melebihi frekuensi bus standarnya, disebut dengan istilah overclocking. Sedangkan bila diatur agar bekerja dengan kecepatan lebih lambat dari frekuensi bus standarnya, disebut underclocking. Pengertian overclocking dan underclocking pada DDR SDRAM ini analogis dengan pengertian overclocking dan underclocking pada prosesor. Pada dasarnya, overclocking adalah upaya peningkatan frekuensi clock, sedangkan underclocking adalah penurunan frekuensi clock.
DDR SDRAM yang digunakan untuk komputer PC Desktop umumnya bertipe DIMM yang memiliki 184 pin. Jumlah pin ini lebih banyak dibandingkan SDRAM yang juga bertipe DIMM yang hanya memiliki 168 pin. Namun, jumlah pin tersebut lebih rendah dibandingkan DDR2 SDRAM yang memiliki 240 pin. Dengan demikian, secara fisik, DDR SDRAM mudah dibedakan dari SDRAM maupun dari DDR2 SDRAM.
DDR SDRAM yang digunakan untuk PC Desktop berbeda dengan DDR SDRAM yang digunakan untuk komputer laptop/notebook. DDR SDRAM untuk komputer laptop disebut DDR SO-DIMM yang memiliki 200 pin. DDR2 SO-DIMM juga memiliki 200 pin. DDR SDRAM didesain beroperasi pada tegangan 2,5 Volt (bandingkan dengan SDRAM yang didesain beroperasi pada tegangan 3,3 Volt). Khusus untuk chip atau modul standar DDR-400 (PC-3200) didesain bekerja pada tegangan 2,6 Volt. Jelas bahwa DDR SDRAM lebih hemat energi dibandingkan SDRAM. Oleh karena itu, DDR SDRAM cocok digunakan untuk komputer laptop karena dapat lebih menghemat energi battery dibandingkan SDRAM.
Kompatibilitas DRAM dipasangkan pada motherboard sangat bergantung pada prosesor dan chipset yang terdapat pada motherboard tersebut. Dalam hal ini, chipset berperanan sangat penting, karena chipsetlah yang menentukan/mengatur jenis atau tipe memori apa yang sesuai atau dapat dipasangkan pada motherboard tersebut, bahkan juga mengatur/menentukan kapasitas dan jumlah modul memori yang dapat dipasangkan. Sekarang ini tidak sedikit chipset-chipset baru yang menggunakan tipe memory (DDR SDRAM) berkonfigurasi dual channel yang memiliki bandwidth dua atau empat kali lipat memori single channel.

* Karakteristik Chip DDR SDRAM *

* Karakteristik Module DDR SDRAM *
o Chip dalam satu modul biasanya berjumlah 8 atau kelipatan dari angka 8 untuk modul non ECC, sedangkan jumlah chip untuk modul ECC biasanya 9 atau kelipatan 9. DRAM ECC, menggunakan satu bit dari setiap bytenya untuk error correction. Chip-chip tersebut umumnya berjajar menempati satu sisi/satu permukaan modul (single sided), atau berjajar menempati kedua sisi/kedua permukaan modul (dual sided). Jumlah chip maksimum dalam satu modul adalah 36 buah chip (9×4). Ukuran fisik chip pada modul DDR SDRAM yang memiliki 36 chip, biasanya lebih kecil dibandingkan modul DDR SDRAM yang memiliki 9 atau 18 chip. Deretan chip yang terdapat pada keping memori biasanya disebut dengan istilah chipset module.
o Pada satu sisi (satu permukaan) sebuah modul DRAM dapat dipasangkan satu atau dua dereten chip DRAM, sehingga pada dua sisi (dua permukaan) sebuah modul DRAM dapat dipasangkan total dua atau empat dereten chip DRAM. Bila sebuah modul memiliki total lebih dari satu deretan chip DRAM, maka memory controller secara periodik/bergantian perlu menutup atau membuka operasi deretan chip tadi, karena hanya satu deretan chip DRAM yang bisa diaktifkan ketika komputer sedang aktif bekerja.
o Seperti halnya SDRAM, tipe kemasan DDR SDRAM ada yang DIMM (untuk PC desktop), ada pula yang SO DIMM (untuk laptop/notebook).
o Daya yang dibutuhkan untuk operasional DDR SDRAM akan meningkat seiring dengan meningkatnya kecepatan (clock speed) DDR SDRAM.
o Seperti SDRAM, kecepatan DDR SDRAM juga dipengaruhi oleh memori latency (DDR SDRAM latency) yang terdiri dari tCAS (CAS latency), tRCD, tRP, dan tRAS.
Patut dicatat bahwa karakteristik chip dan modul DDR SDRAM merupakan dua hal yang tidak dapat dipisahkan. Keduanya saling berkaitan. Karena daya tampung data pada setiap chip adalah sama (seragam), maka kapasitas atau daya tampung data modul memori ditentukan oleh besar kapasitas per chip dikalikan jumlah chip yang terpasang pada modul.
* Kepadatan memori (memory density) *
DDR SDRAM PC3200 dirancang bekerja dengan kecepatan (clock rate) 200 MHz. Chip yang digunakan adalah chip DDR-400. Oleh karena jenis DRAM ini menggunakan teknologi DDR, maka dapat dikatakan bahwa kecepatan efektifnya (effective clock rate) sebesar 400 MHz. Dengan demikian DDR SDRAM PC3200 memiliki bandwidth 3200 MB/s.
Modul DDR SDRAM PC3200 non-ECC (184 pin) berkapasitas 1GB yang banyak beredar di pasaran Indonesia, umumnya mempunyai 16 chip yang terpasang berjajar pada kedua sisi (side) modul, masing-masing sisi berisi 8 chip. Daya tampung data setiap chip-nya 512 Mbit. Secara individual, chip ini tersusun dari 64 M (64 juta) unit penyimpanan, lebar data 8 bit (x8). RAM yang diproduksi dengan rancangan seperti ini disebut Low Density DDR SDRAM (RAM berkepadatan rendah).
Modul DDR SDRAM PC3200 non-ECC berkapasitas 1 GB yang memiliki spesifikasi sama seperti di atas, namun secara individual, setiap chip-nya tersusun dari 128 M (128 juta) unit penyimpanan, lebar data 4 bit (x4), disebut High Density DDR SDRAM (RAM berkepadatan tinggi). Secara visual, sedikit sekali perbedaan antara Low Density DDR SDRAM dengan High Density DDR SDRAM.
Perusahaan Samsung diketahui memproduksi chip untuk modul DDR SDRAM PC3200 berkepadatan tinggi (High Density DDR SDRAM). Terdapat dua versi ukuran fisik chip yang diproduksi oleh Samsung, yaitu chip yang berukuran 22 x 10 mm, dan chip yang berukuran 12 x 9 mm. Chip berkepadatan tinggi produk Samsung ini dapat dikenali dengan mudah melalui kode angka yang tertera (tertulis) pada permukaan chip. Jika karakter keenam dan ketujuh dari deretan kode tersebut adalah ‘04’ (misalnya K4H510438D-UCCC), maka lebar datanya 4 bit (x4), hal ini menunjukkan chip tersebut adalah chip berkepadatan tinggi (High Density). Jika karakter tersebut adalah ‘08’, maka lebar datanya 8 bit (x8), hal ini menunjukkan chip tersebut adalah chip berkepadatan rendah (Low Density).
* MDDR *
MDDR kependekan dari Mobile DDR SDRAM. Type memori ini banyak digunakan pada peralatan elektronik ‘portable’ (mudah dibawa kemana-mana), misalnya telepon ‘mobile’ dan digital audio players. MDDR bekerja pada tegangan 1,8 Volt, merupakan tegangan yang tergolong rendah, hemat energi, kebutuhan daya rendah (dibandingkan dengan DDR SDRAM standar yang bekerja pada tegangan 2,5 Volt).


ROM


Memori hanya baca (bahasa Inggris: Read-only Memory) adalah istilah untuk media penyimpanan data pada komputer. ROM ini adalah salah satu memori yang ada dalam computer. ROM ini sifatnya permanen, artinya program / data yang disimpan di dalam ROM ini tidak mudah hilang atau berubah walau aliran listrik di matikan.
Menyimpan data pada ROM tidak dapat dilakukan dengan mudah, namun membaca data dari ROM dapat dilakukan dengan mudah. Biasanya program / data yang ada dalam ROM ini diisi oleh pabrik yang membuatnya. Oleh karena sifat ini, ROM biasa digunakan untuk menyimpan firmware (piranti lunak yang berhubungan erat dengan piranti keras).
Salah satu contoh ROM adalah ROM BIOS yang berisi program dasar system komputer yang mengatur / menyiapkan semua peralatan / komponen yang ada dalam komputer saat komputer dihidupkan.
ROM modern didapati dalam bentuk IC, persis seperti medium penyimpanan/memori lainnya seperti RAM. Untuk membedakannya perlu membaca teks yang tertera pada IC-nya. Biasanya dimulai dengan nomer 27xxx, angka 27 menunjukkan jenis ROM , xxx menunjukkan kapasitas dalam kilo bit.

Contoh ROM BIOS

[sunting]Mask ROM

Data pada ROM dimasukkan langsung melalui mask pada saat perakitan chip. Hal ini membuatnya sangat ekonomis terutama jika kita memproduksi dalam jumlah banyak. Namun hal ini juga menjadi sangat mahal karena tidak fleksibel. Sebuah perubahan walaupun hanya satu bit membutuhkan mask baru yang tentu saja tidak murah. Karena tidak fleksibel maka jarang ada yang menggunakannya lagi.
Aplikasi lain yang mirip dengan ROM adalah CD-ROM prerecorded yang familiar dengan kita, salah satunya CD musik. Berbeda dengan pendapat banyak orang bahwa CD-ROM ditulis dengan laser, kenyataannya data pada CD-ROM lebih tepatnya dicetak pada piringan plastik.

[sunting]Jenis-jenis MHB

  • Mask ROM
  • PROM
  • EPROM
  • EAROM
  • EEPROM
  • Flash Memory





PROM

PROM kependekan dari Programmable Read Only Memory. PROM adalah salah satu jenis ROM, merupakan alat penyimpan berupa memori (memory device) yang hanya bisa dibaca isinya. PROM memang tergolong memori non-volatile, artinya program yang tersimpan di dalamnya tidak akan hilang walaupun komputer dimatikan (tidak mendapatkan daya listrik). Program yang tersimpan di dalamnya bersifat permanen. Biasanya digunakan untuk menyimpan program bahasa mesin yang sudah menjadi bagian hardware (perangkat keras) komputer. Contohnya adalah program yang men-start komputer ketika komputer baru dinyalakan (di-on-kan).
Program yang ada di dalam PROM diisi oleh pabrik pembuatnya. Pengisian program ke dalam PROM menggunakan alat khusus bernama PROM burner, atau PROM Writer Program atau informasi yang telah diisikan atau direkamkan ke dalam PROM, tidak dapat dihapus lagi.


EPROM

EPROM kependekan dari Erasable Programmable Read Only Memory. EPROM berbeda dengan PROM. EPROM adalah jenis chip memori yang dapat ditulisi program secara elektris. Program atau informasi yang tersimpan di dalam EPROM dapat dihapus bila terkena sinar ultraviolet dan dapat ditulisi kembali. Kesamaannya dengan PROM adalah keduanya merupakan jenis ROM, termasuk memori non-volatile, data yang tersimpan di dalamnya tidak bisa hilang walaupun komputer dimatikan, tidak membutuhkan daya listrik untuk mempertahankan atau menjaga informasi atau program yang tersimpan di dalamnya.


Alat yang dapat digunakan untuk menghapus isi chip EPROM adalah UV PROM eraser. Alat ini akan menyinarkan sinar ultraviolet ke memori tempat data disimpan dalam chip EPROM (disinarkan tepat pada lubang kuarsa bening). Dengan demikian, chip EPROM dapat digunakan kembali dan dapat diisikan informasi/program baru ke dalamnya. Informasi lain menyebutkan bahwa alat yang dapat digunakan untuk menghapus isi EPROM adalah EPROM Rewriter.


EEPROM

EEPROM kependekan dari Electrically Erasable Programmable Read Only Memory. Seperti halnya PROM dan EPROM, EEPROM merupakan memori non-volatile. Informasi, data atau program yang tersimpan di dalamnya tidak akan hilang walaupun komputer dimatikan, dan tidak membutuhkan daya listrik untuk mempertahankan atau menjaga informasi atau program yang tersimpan di dalamnya.
EEPROM adalah komponen yang banyak digunakan dalam komputer dan peralatan elektronik lain untuk menyimpan konfigurasi data pada peralatan elektronik tersebut. Kapasitas atau daya tampung simpan datanya sangat terbatas. Pada sistem hardware komputer, chip EEPROM umumnya digunakan untuk menyimpan data konfigurasi BIOS dan pengaturan (setting) sistem yang berhubungan dengannya.
EEPROM memiliki kelebihan tersendiri dibandingkan EPROM. EEPROM dapat dihapus secara elektris menggunakan sinar ultraviolet, sehingga proses penghapusannya lebih cepat dibandingkan EPROM. Penghapusan juga dapat dilakukan secara elektrik dari papan circuit dengan menggunakan perangkat lunak EEPROM Programmer. Alat yang dapat digunakan untuk menghapus isi EEPROM disebut EEPROM Rewriter. Produk EEPROM versi awal, hanya dapat dihapus dan diisi ulang kurang lebih sebanyak 100 kali. Sedangkan produk-produk terbaru dapat dihapus dan diisi ulang (erase-rewrite) sampai ribuan kali (bahkan beberapa informasi menyebutkan mampu sampai 100 ribu kali)

~MACAM-MACAM HARDDISK~

            Seagate
Seagate memiliki kalabihan : 


  • Untuk produk internasional garansi sampai 5 tahun , sedangkan produk lokal garansi sampai 3 tahun .
  • Awet ketika digunakan selama 24 jam ( menurut para pengguna ).
  • Harga relatif lebih murah.
  • 2 tipe : ATA / SATA
  • Transfer data hingga 5400-7200 RPM.
Kekurangan :
  • Cepat panas .
  • Harga tergantung dari kurs dollar.
Maxtor
Kelebihan dari Maxtor :
  • Untuk produk internasional garansi sampai 3 tahun , sedangkan produk lokal garansi sampai 2 tahun
  • Lebih murah dari HD SEAGATE
  • RPMnya hampir sama dengan produk SEAGATE
  • Desain yang menarik .
Kekurangan :
  • Mudah / sering terkenabad sector.
  • Cepat Panas
Samsung
Kelebihan dari harddisk Samsung :
  • Desain menarik
  • Transfer data hingga 5400-7200 RPM
  • Harga cukup murah
  • Lebih hemat power hingga 50 % .
  • Tidak Berisik
WD (Western Digital)
Kelebihan WD :
  • Harga relatif lebih murah.
  • Garansi hingga 1 tahun.
  • RPMnya hampir sama dengan produk SEAGATE.
  • Cepat panas
  • Tidak menimbulkan suara yang berisik .
 Kekurangan :
  • Jika digunakan terus menerus selama 24 jam , HD ini mungkin belum cukup optimal . Jika terus di paksakan maka kecepatannya akan semakin turun dan akan terus menurun.

Take from:

0 komentar: